

TOA fluxes from MTG/FCI: first results on test data and preparation of the commissioning

Nicolas Clerbaux and team, RMIB

GERB technical session Earth Radiation Budget Workshop 2022 MPI-M, Hamburg, 12-14 Oct. 2022.

Content

- Introduction to MTG
- Rationales for TOA radiation products from MTG/FCI
- Preparation using MTG/FCI test data
- "SEVIRI-heritage channels" products
- "Full channels" products
- Comparison with other state of the art imagers (GOES-16, Himawari-8, VIIRS, MetImage)
- Summary

Reference: Combined Technical Notes: Evaluation report on the homogeneous transition of cloud physical properties from MSG to MTG & Evaluation report on the transition of TOA Radiation components from MSG to MTG, SAF/CM/RMIB/TN/CDOP3/WP2340, version 1.0, date 15.07.2022

Meteosat Third Generation overview

- 2 imager (MTG-I) and 1 sounder (MTG-S)
- Imager : Flexible Combined Imager (FCI)
- Full Disk High Spectral Imagery (FDHSI):
 16 channels @ 2km (thermal) and 1km (solar). (Note: 2 thermal channels also at 1km and 2 solar channels at 0.5 km)
- No GERB mission continuity with BB instrument. It is generally admitted that NB→BB would be accurate enough.
- Calibration: BB and MND (Metallic Neutral Density) filters (+ deep space)

						oday							
2017	2018	2019	2020	2021	2022		2023	2024	2025	2020	5	2027	2028
NAT CLUB				L-2 years for I1			MTG I1 Laune Commisionni		Operations I1				
MTGUP						L-2 years for S1			MTG S1 Launch & Initial Operations S1		ons S1		
								L-2 years fo	or I2	MTG I2 Launch & Commisionning	Initial Operation	ons I2	
Tranche 1			Tranche 2				Tranche 3		Tranche 4	Tranche 5		Tranche 6	
2017	2018	2019	2020	2021	2022		2023	2024	2025	2020	5 ,	2027	2028
	6 66 115						L-2 years for	A1	Metop A1 Lau		ons		
EPS-SG UP							L-2 yea	rs for B1		Metop-SG Initial O B1 Launc B1	perations		
			Phase 1	Phase 2		Phase 3	Pha	ise 4	Phase 5				

Launch and commissioning

- MTG-I1 launch on 30 Nov. 2022 (or 14 Dec.)
- Commissioning almost 1 year
- First FCI images to users around April
 2023
- Pre-operational dissemination on EUMETCast around June 2023
- "Close loop users" with feedback expected from EUMETSAT for Product Validation Review Board (PVRB).
- Switch the operational service end 2023
- Overlap with MSG but MTG-I1 @ 3.5°W and MSG-3 @ 0°W

Rationales for MTG/FCI TOA Radiation Products

"SEVIRI Heritage Channels" product:

 Development of a long MSG+MTG record over 2004-present (CM SAF CLAAS-4 activity).

"Full channels" product:

- Continuation of the GERB mission
- Participate to "Geo Ring" TOA products with GOES, Himawari, AGRI, ...
- Participate in ISCCP-NG (e.g. verification of the simulated fluxes profile with TOA observations).
- Synergies with EarthCARE BBR fluxes (e.g. better understanding of the GEO instantaneous flux error due to ADMs).

Image made from ISCCP-NG L1g Data

Spectral Responses: MTG and MSG

Black : MTG-I1/FCI Wavelength (μm)

Red: MSG4/SEVIRI

Thermal channels: 8 (FCI), 8 (SEVIRI)

MTG/FCI Test Data (MTGTD-360)

- MTGTD-360 (released May 2022)
- 24 h of FCI Level 1C FDHSI (day: 20.09.2017)
- Solar /Thermal channels @ 1km / 2km
- Simulated channels that are spectrally representative of the actual MTG FCI instrument
- Based on the latest FCI spectral response functions
- Includes noise
- ECMWF (atm.), CAMS (aerosols), SEVIRI (cloud)
- RTM : ARTDECO / RTTOV for solar/thermal simulations

SEVIRI-heritage: solar channels

Spectral band adjustments based on RTM simulations (libRadtran):

Regressions for MTG \rightarrow MSG solar channels	RMSE	(%)
VIS006 = 0.000236 +1.005716 * CH03	0.0021	0.5%
VIS008 = -0.001942 + 0.067589* CH02 + 0.735623* CH04 + 0.240638* CH05	0.0080	1.7%
IR_016 = -0.000813 + 0.026045 * CH05 + 0.991830 * CH07	0.0052	1.7%

Spectral band adjustments not fully accurate for VIS008 and IR 016:

- Develop/use dedicated NB->BB regressions for MTG/FCI
- Develop empirical relations based on collocated MTG/MSG data

SEVIRI-heritage: thermal channels

Spectral band adjustments based on RTM simulations (SBDART):

Regressions for MTG → MSG thermal channels	RMSE	(%)
CH09> 240K : IR_039 = 8.448914 + 0.964314 * CH09 CH09<240 : IR_039 = 56.269095 + 0.763111 * CH09	0.6 K 2.3 K	0.22% 1.00%
WV_062 = 1.880384 +1.041622 * CH10 - 0.051980 * CH11	0.21 K	0.09%
WV_073 = -1.722645 + 0.050784 * CH10 +1.038748*CH11 - 0.083994 * CH16	0.17 K	0.07%
IR_087 = 0.245946 + 0.996822 * CH12	0.03 K	0.01%
IR_096 = 0.204206 + 1.012747 * CH13 -0.014151 * CH14	0.04 K	0.02%
IR_108 = -3.008842 + 0.890533 * CH14 + 0.120727 * CH15	0.14 K	0.06%
IR_120 = 0.111141+0.208530*CH14 + 0.866020 * CH15 -0.075872 * CH16	0.13 K	0.05%
IR_134 = 19.312592 + 0.909768 * CH16	0.94 K	0.39%

Full channels NB → **BB** : solar radiation

- Based on radiative transfer simulations
- Regression in (bidirectional) reflectance
- Adding 2% noise on the NB reflectances to avoid "overfitting" of the RTM simulations
- NB → BB RMS error of 0.0031 which is 0.9% of the average BB reflectance (0.35)
- Corresponding MSG/SEVIRI RMSE of 4.3%
- Illustration on MTG/FCI test data

BB reflectance (ρ_{BB}) estimated from FCI test data on 20.09.2017 12:00 UTC

Example for SZA=30°, VZA=30°, RAA=90°:

$$\rho_{\text{BB}} = 0.00619 + 0.18980 \quad \rho_{\text{CH01}} + 0.11731 \quad \rho_{\text{CH02}} + 0.14371 \quad \rho_{\text{CH03}} + 0.10182 \quad \rho_{\text{CH04}} + 0.21284 \quad \rho_{\text{CH05}} + 0.05102 \quad \rho_{\text{CH06}} + 0.07835 \quad \rho_{\text{CH07}} + 0.03839 \quad \rho_{\text{CH08}}$$

Comparison with others state of the art imagers

	# solar ch.	No noise	1 st order 5% noise	2 nd order 5% noise
MTG/FCI	8	0.9%	1.0%	0.7%
MSG/SEVIRI	3	5.1%	5.1%	4.3%
GOES16/ABI	6	2.9%	3.0%	2.7%
Himawari-8/AHI	6	3.9%	4.4%	4.1%
SNPP/VIIRS	9	3.6%	4.7%	3.5%
Metop-SG/VII (MetImage)	11	0.8%	0.9%	0.8%

Note: GERB SW channel unfiltering RMS error of ~0.5% (Clerbaux et al., 2008)

Full channels NB → BB : thermal radiation

- Slightly worse results for MTG/FCI than for MSG/SEVIRI
- This based only on the spectral responses,
- but MTG/FCI might profit for better detectors and calibration process.

	RMSE				
	1st order regression	2nd order regression			
MSG/SEVIRI	0.84 W/m²/sr (1.2%)	0.45 W/m²/sr (0.65%)			
MSG/SEVIRI with IR_O39	0.77 W/m²/sr (1.1%)	0.45 W/m²/sr (0.65%)			
MTG/FCI	0.92 W/m²/sr (1.3%)	0.51 W/m²/sr (0.74%)			
MTG/FCI with CH09	0.84 W/m²/sr (1.2%)	0.51 W/m²/sr (0.74%)			

BB thermal radiance (L_{th}) estimated from FCI test data on 20.09.2017 12:00 UTC

Comparison with others state of the art imagers

	# solar ch.	No noise	1 st order 5% noise	2 nd order 5% noise
MTG/FCI	7	1.3%	1.3%	0.8%
MSG/SEVIRI	7	1.2%	1.2%	0.7%
GOES16/ABI	9	1.3%	1.3%	0.7%
Himawari-8/AHI	9	1.3%	1.3%	0.7%
SNPP/VIIRS	4	2.9%	3.9%	3.2%
Metop-SG/VII (MetImage)	6	1.4%	1.4%	1.1%

- Similar results for the different imagers (including SEVIRI)
- Except VIIRS (no H₂O channels)

Summary

- On-going preparation to MTG
- Continuation of SEVIRI in CM SAF CLAAS CDR:
 - No significant problem expected for the OLR
 - Significant SR differences for visible 0.8μm and near infrared 1.6μm channels:
 - More effort in SBAF (e.g. empirical correction)
 - Otherwise develop dedicated NB → BB relations for FCI and check consistency with SEVIRI using overlap data.
- Plan to derive "full channel" GERB-like from MTG/FCI soon after launch (but as best effort basis):
 - Reflected solar flux (RSF) from MTG/FCI looks very promising (NB→BB error ~1%)
 - MTG/FCI OLR not expected to improve with respect to MSG/SEVIRI OLR
 - 2 steps approach: (1) start with theoretical regressions, (2) derive empirical relations (e.g. with GERB)